Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.

Identifieur interne : 000522 ( Main/Exploration ); précédent : 000521; suivant : 000523

Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.

Auteurs : Maxime Durand [France] ; Oliver Brendel [France] ; Cyril Buré [France] ; Didier Le Thiec [France]

Source :

RBID : pubmed:32150759

Abstract

Recent research has shown that plant acclimation to diverse patterns of light intensity modifies the dynamics of their stomatal response. Therefore, whether plants are grown in controlled conditions or in the field may impact their stomatal dynamics. We analysed the stomatal dynamics of two Populus euramericana and two Populus nigra genotypes grown in the field under contrasting water availability. By comparing their stomatal dynamics with that of the same genotypes grown in a glasshouse, we were able to test whether differences between these growing conditions interacted with genotypic differences in affecting stomatal dynamics and responses to soil water deficit. We found that, despite higher stomatal density and smaller size, in the field stomatal dynamics were much slower than in the glasshouse. Overall, differences among genotypes and their response to soil water deficit were much less pronounced in the field compared with the glasshouse. These results indicate that stomatal dynamics are regulated by both genotype-specific and environmental factors. Moreover, having slower stomata may be advantageous under some conditions. While stomatal dynamics were linked with whole-plant transpiration per leaf area in both experiments, the contribution of stomatal morphology varies dependent on the environmental conditions.

DOI: 10.1111/nph.16525
PubMed: 32150759


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.</title>
<author>
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32150759</idno>
<idno type="pmid">32150759</idno>
<idno type="doi">10.1111/nph.16525</idno>
<idno type="wicri:Area/Main/Corpus">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000408</idno>
<idno type="wicri:Area/Main/Curation">000408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000408</idno>
<idno type="wicri:Area/Main/Exploration">000408</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.</title>
<author>
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent research has shown that plant acclimation to diverse patterns of light intensity modifies the dynamics of their stomatal response. Therefore, whether plants are grown in controlled conditions or in the field may impact their stomatal dynamics. We analysed the stomatal dynamics of two Populus euramericana and two Populus nigra genotypes grown in the field under contrasting water availability. By comparing their stomatal dynamics with that of the same genotypes grown in a glasshouse, we were able to test whether differences between these growing conditions interacted with genotypic differences in affecting stomatal dynamics and responses to soil water deficit. We found that, despite higher stomatal density and smaller size, in the field stomatal dynamics were much slower than in the glasshouse. Overall, differences among genotypes and their response to soil water deficit were much less pronounced in the field compared with the glasshouse. These results indicate that stomatal dynamics are regulated by both genotype-specific and environmental factors. Moreover, having slower stomata may be advantageous under some conditions. While stomatal dynamics were linked with whole-plant transpiration per leaf area in both experiments, the contribution of stomatal morphology varies dependent on the environmental conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32150759</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.</ArticleTitle>
<Pagination>
<MedlinePgn>392-406</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16525</ELocationID>
<Abstract>
<AbstractText>Recent research has shown that plant acclimation to diverse patterns of light intensity modifies the dynamics of their stomatal response. Therefore, whether plants are grown in controlled conditions or in the field may impact their stomatal dynamics. We analysed the stomatal dynamics of two Populus euramericana and two Populus nigra genotypes grown in the field under contrasting water availability. By comparing their stomatal dynamics with that of the same genotypes grown in a glasshouse, we were able to test whether differences between these growing conditions interacted with genotypic differences in affecting stomatal dynamics and responses to soil water deficit. We found that, despite higher stomatal density and smaller size, in the field stomatal dynamics were much slower than in the glasshouse. Overall, differences among genotypes and their response to soil water deficit were much less pronounced in the field compared with the glasshouse. These results indicate that stomatal dynamics are regulated by both genotype-specific and environmental factors. Moreover, having slower stomata may be advantageous under some conditions. While stomatal dynamics were linked with whole-plant transpiration per leaf area in both experiments, the contribution of stomatal morphology varies dependent on the environmental conditions.</AbstractText>
<CopyrightInformation>© 2020 INRAE New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Durand</LastName>
<ForeName>Maxime</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-8991-3601</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brendel</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
<Identifier Source="ORCID">0000-0003-3252-0273</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Buré</LastName>
<ForeName>Cyril</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-3463-4971</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Thiec</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-4204-551X</Identifier>
<AffiliationInfo>
<Affiliation>INRAE, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">drought</Keyword>
<Keyword MajorTopicYN="Y">growing conditions</Keyword>
<Keyword MajorTopicYN="Y">kinetics of stomatal responses</Keyword>
<Keyword MajorTopicYN="Y">light</Keyword>
<Keyword MajorTopicYN="Y">stomatal conductance</Keyword>
<Keyword MajorTopicYN="Y">vapour pressure deficit (VPD)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32150759</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16525</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Al Afas N, Marron N, Ceulemans R. 2006. Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. Environmental and Experimental Botany 58: 279-286.</Citation>
</Reference>
<Reference>
<Citation>Assmann SM, Snyder JA, Lee YRJ. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant, Cell & Environment 23: 387-395.</Citation>
</Reference>
<Reference>
<Citation>Barradas VL, Jones HG, Clark JA. 1994. Stomatal responses to changing irradiance in Phaseolus vulgaris L. Journal of Experimental Botany 45: 931-936.</Citation>
</Reference>
<Reference>
<Citation>Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N et al. 2013. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Current Biology 23: 53-57.</Citation>
</Reference>
<Reference>
<Citation>de Boer HJ, Price CA, Wagner-Cremer F, Dekker SC, Franks PJ, Veneklaas EJ. 2016. Optimal allocation of leaf epidermal area for gas exchange. New Phytologist 210: 1219-1228.</Citation>
</Reference>
<Reference>
<Citation>Bogeat-Triboulot MB, Buré C, Gérardin T, Chuste PA, Le Thiec D, Hummel I, Durand M, Wildhagen H, Douthe C, Molins A et al. 2019. Additive effects of high growth rate and low transpiration rate drive differences in whole plant transpiration efficiency among black poplar genotypes. Environmental and Experimental Botany 166: 103784.</Citation>
</Reference>
<Reference>
<Citation>Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444-1449.</Citation>
</Reference>
<Reference>
<Citation>Brendel O, Le Thiec D, Scotti-Saintagne C, Bodenes C, Kremer A, Guehl JM. 2008. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genetics & Genomes 4: 263-278.</Citation>
</Reference>
<Reference>
<Citation>Brownlee C. 2001. The long and the short of stomatal density signals. Trends in Plant Science 6: 441-442.</Citation>
</Reference>
<Reference>
<Citation>Buckley TN. 2019. How do stomata respond to water status? New Phytologist 224: 21-36.</Citation>
</Reference>
<Reference>
<Citation>Ceulemans R, Hinckley TM, Impens I. 1989. Stomatal response of hybrid poplar to incident light, sudden darkening and leaf excision. Physiologia Plantarum 75: 174-182.</Citation>
</Reference>
<Reference>
<Citation>Chen SL, Wang SS, Altman A, Huttermann A. 1997. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiology 17: 797-803.</Citation>
</Reference>
<Reference>
<Citation>Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. 2004. Breeding for high water-use efficiency. Journal of Experimental Botany 55: 2447-2460.</Citation>
</Reference>
<Reference>
<Citation>Coopman RE, Jara JC, Bravo LA, Sáez KL, Mella GR, Escobar R. 2008. Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electronic Journal of Biotechnology 11: 30-39.</Citation>
</Reference>
<Reference>
<Citation>Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471-505.</Citation>
</Reference>
<Reference>
<Citation>Dai A. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change 2: 45-65.</Citation>
</Reference>
<Reference>
<Citation>Dai A. 2012. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52-58.</Citation>
</Reference>
<Reference>
<Citation>Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment 33: 1419-1438.</Citation>
</Reference>
<Reference>
<Citation>Davies WJ, Kozlowski TT. 1975. Stomatal responses to changes in light intensity as influenced by plant water stress. Forest Science 21: 129-133.</Citation>
</Reference>
<Reference>
<Citation>Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495-505.</Citation>
</Reference>
<Reference>
<Citation>Duarte I, Rotter A, Malvestiti A, Silva M. 2009. The role of glass as a barrier against the transmission of ultraviolet radiation: an experimental study. Photodermatology, Photoimmunology and Photomedicine 25: 181-184.</Citation>
</Reference>
<Reference>
<Citation>Dumont J, Spicher F, Montpied P, Dizengremel P, Jolivet Y, Le Thiec D. 2013. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides x Populus nigra genotypes. Environmental Pollution 173: 85-96.</Citation>
</Reference>
<Reference>
<Citation>Durand M, Brendel O, Buré C, Courtois P, Lily J-B, Granier A, Le Thiec D. 2020. Impacts of a partial rainfall exclusion in the field on growth and transpiration: consequences for leaf-level and whole-plant water-use efficiency compared to controlled conditions. Agricultural and Forest Meteorology 282-283: 282-283.</Citation>
</Reference>
<Reference>
<Citation>Durand M, Brendel O, Buré C, Le Thiec D. 2019. Altered stomatal dynamics induced by changes in irradiance and vapour-pressure deficit under drought: impact on the whole plant transpiration efficiency of poplar genotypes. New Phytologist 222: 1789-1802.</Citation>
</Reference>
<Reference>
<Citation>Dusart N, Vaultier MN, Olry JC, Buré C, Gérard J, Jolivet Y, Le Thiec D. 2019. Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit. Environmental Pollution 252: 1687-1697.</Citation>
</Reference>
<Reference>
<Citation>Eisinger WR, Bogomolni RA, Taiz L. 2003. Interactions between a blue-green reversible photoreceptor and a separate UV-B receptor in stomatal guard cells. American Journal of Botany 90: 1560-1566.</Citation>
</Reference>
<Reference>
<Citation>Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC. 2016. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Frontiers. Plant Science 7: 1253.</Citation>
</Reference>
<Reference>
<Citation>FAO. 2018. Chapter 2: Quantifying the contributions of forests to the sustainable development goals. In: Muller E, Kushlin A, Linhares-Juvenal T, Muchoney D, Wertz-Kanounnikoff S, Henderson-Howat D eds. The State of the World’s Forests 2018 - Forest pathways to sustainable development. Rome, Italy: The Publishing Group (OCCP) in FAO’s Office for Corporate Communication, 7-71.</Citation>
</Reference>
<Reference>
<Citation>Franks PJ, Cowan IR, Farquhar GD. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant, Cell & Environment 20: 142-145.</Citation>
</Reference>
<Reference>
<Citation>Franks PJ, Farquhar GD. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology 125: 935-942.</Citation>
</Reference>
<Reference>
<Citation>Gérardin T, Douthe C, Flexas J, Brendel O. 2018. Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana tabacum. Environmental and Experimental Botany 153: 188-197.</Citation>
</Reference>
<Reference>
<Citation>Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, Rossi S, Crivellaro A. 2007. Evaluation of drought response of two poplar clones (Populus x canadensis Monch 'I-214' and P-deltoides Marsh. 'Dvina') through high resolution analysis of stem growth. Journal of Experimental Botany 58: 2673-2683.</Citation>
</Reference>
<Reference>
<Citation>Granier A. 1985. A new method of sapflow measurement in tree stems. Annales des Sciences Forestières 42: 193-200.</Citation>
</Reference>
<Reference>
<Citation>Granier A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sapflow measurements. Tree Physiology 3: 309-319.</Citation>
</Reference>
<Reference>
<Citation>Granot D, Kelly G. 2019. Evolution of guard-cell theories: the story of sugars. Trends in Plant Science 24: 507-518.</Citation>
</Reference>
<Reference>
<Citation>Haworth M, Marino G, Cosentino SL, Brunetti C, De Carlo A, Avola G, Riggi E, Loreto F, Centritto M. 2018. Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.). Environmental and Experimental Botany 147: 116-124.</Citation>
</Reference>
<Reference>
<Citation>Haydon MJ, Mielczarek O, Frank A, Roman A, Webb AAR. 2017. Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiology 175: 947-958.</Citation>
</Reference>
<Reference>
<Citation>Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908.</Citation>
</Reference>
<Reference>
<Citation>IPCC. 2014. Climate change 2014: Synthesis report. In: Meyer L, Brinkman S, van Kesteren L, Leprince-Ringuet N, van Boxmeer F, eds. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: Cambridge University Press.</Citation>
</Reference>
<Reference>
<Citation>Kaiser H, Kappen L. 2000. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. Journal of Experimental Botany 51: 1741-1749.</Citation>
</Reference>
<Reference>
<Citation>Kardiman R, Raebild A. 2018. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiology 38: 696-705.</Citation>
</Reference>
<Reference>
<Citation>Lawson T, Vialet-Chabrand S. 2019. Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist 221: 93-98.</Citation>
</Reference>
<Reference>
<Citation>Males J, Griffiths H. 2017. Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads. Plant, Cell & Environment 40: 2931-2945.</Citation>
</Reference>
<Reference>
<Citation>Matthews JSA, Vialet-Chabrand S, Lawson T. 2018. Acclimation to fluctuating light impacts the rapidity of response and diurnal rhythm of stomatal conductance. Plant Physiology 176: 1939-1951.</Citation>
</Reference>
<Reference>
<Citation>McAdam SAM, Brodribb TJ. 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiology 167: 833-843.</Citation>
</Reference>
<Reference>
<Citation>McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist 211: 1209-1220.</Citation>
</Reference>
<Reference>
<Citation>Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H. 2018. Stomatal VPD response: there is more to the story than ABA. Plant Physiology 176: 851-864.</Citation>
</Reference>
<Reference>
<Citation>Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Le Thiec D, Brechet C, Brignolas F. 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytologist 169: 765-777.</Citation>
</Reference>
<Reference>
<Citation>Muller E, Lambs L. 2009. Daily variations of water use with vapor pressure deficit in a plantation of I214 poplars. Water 1: 32.</Citation>
</Reference>
<Reference>
<Citation>Ooba M, Takahashi H. 2003. Effect of asymmetric stomatal response on gas-exchange dynamics. Ecological Modelling 164: 65-82.</Citation>
</Reference>
<Reference>
<Citation>Pantin F, Blatt MR. 2018. Stomatal response to humidity: blurring the boundary between active and passive movement. Plant Physiology 176: 485-488.</Citation>
</Reference>
<Reference>
<Citation>Pantin F, Renaud J, Barbier F, Vavasseur A, Le Thiec D, Rose C, Bariac T, Casson S, McLachlan DH, Hetherington AM et al. 2013. Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. Current Biology 23: 1805-1811.</Citation>
</Reference>
<Reference>
<Citation>Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR. 2019. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363: 1456.</Citation>
</Reference>
<Reference>
<Citation>Peak D, Mott KA. 2011. A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant, Cell & Environment 34: 162-178.</Citation>
</Reference>
<Reference>
<Citation>Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten WH, Kleyer M, Schurr U, Postma J. 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist 212: 838-855.</Citation>
</Reference>
<Reference>
<Citation>Powles JE, Buckley TN, Nicotra AB, Farquhar GD. 2006. Dynamics of stomatal water relations following leaf excision. Plant, Cell & Environment 29: 981-992.</Citation>
</Reference>
<Reference>
<Citation>R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.r-project.org/ [accessed 11 October 2019].</Citation>
</Reference>
<Reference>
<Citation>Raven JA. 2014. Speedy small stomata? Journal of Experimental Botany 65: 1415-1424.</Citation>
</Reference>
<Reference>
<Citation>Rayment MB, Loustau D, Jarvis PG. 2000. Measuring and modeling conductances of black spruce at three organizational scales: shoot, branch and canopy. Tree Physiology 20: 713-723.</Citation>
</Reference>
<Reference>
<Citation>Resco de Dios V. 2017. Circadian regulation and diurnal variation in gas exchange. Plant Physiology 175: 3-4.</Citation>
</Reference>
<Reference>
<Citation>Resco de Dios V, Gessler A, Ferrio JP, Alday JG, Bahn M, Del Castillo J, Devidal S, Garcia-Munoz S, Kayler Z, Landais D et al. 2016. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions. GigaScience 5: 43.</Citation>
</Reference>
<Reference>
<Citation>Roden JS, Pearcy RW. 1993. Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments. Oecologia 93: 208-214.</Citation>
</Reference>
<Reference>
<Citation>Roussel M, Dreyer E, Montpied P, Le-Provost G, Guehl JM, Brendel O. 2009a. The diversity of 13C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance. Journal of Experimental Botany 60: 2419-2431.</Citation>
</Reference>
<Reference>
<Citation>Roussel M, Le Thiec D, Montpied P, Ningre N, Guehl J-M, Brendel O. 2009b. Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits. Annals of Forest Science 66: 408-408.</Citation>
</Reference>
<Reference>
<Citation>Sack L, Cowan PD, Jaikumar N, Holbrook NM. 2003. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment 26: 1343-1356.</Citation>
</Reference>
<Reference>
<Citation>Sheffield J, Wood EF. 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31: 79-105.</Citation>
</Reference>
<Reference>
<Citation>Shimazaki K-i, Doi M, Assmann SM, Kinoshita T. 2007. Light regulation of stomatal movement. Annual Review of Plant Biology 219-247.</Citation>
</Reference>
<Reference>
<Citation>Tinoco-Ojanguren C, Pearcy RW. 1993. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. Oecologia 94: 395-402.</Citation>
</Reference>
<Reference>
<Citation>Touma D, Ashfaq M, Nayak MA, Kao S-C, Diffenbaugh NS. 2015. A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology 526: 196-207.</Citation>
</Reference>
<Reference>
<Citation>Tschaplinski TJ, Blake TJ. 1989. Water relations, photosynthetic capacity, and root shoot partitioning of photosynthates as determinants of productivity in hybrid poplar. Canadian Journal of Botany = Revue Canadienne de Botanique 67: 1689-1697.</Citation>
</Reference>
<Reference>
<Citation>Vialet-Chabrand S, Dreyer E, Brendel O. 2013. Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. Plant, Cell & Environment 36: 1529-1546.</Citation>
</Reference>
<Reference>
<Citation>Vialet-Chabrand S, Matthews JSA, Brendel O, Blatt MR, Wang Y, Hills A, Griffiths H, Rogers S, Lawson T. 2016. Modelling water use efficiency in a dynamic environment: an example using Arabidopsis thaliana. Plant Science 251: 65-74.</Citation>
</Reference>
<Reference>
<Citation>Vialet-Chabrand S, Matthews JSA, McAusland L, Blatt MR, Griffiths H, Lawson T. 2017. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiology 174: 603-613.</Citation>
</Reference>
<Reference>
<Citation>Vico G, Manzoni S, Palmroth S, Katul G. 2011. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytologist 192: 640-652.</Citation>
</Reference>
<Reference>
<Citation>Viger M, Smith HK, Cohen D, Dewoody J, Trewin H, Steenackers M, Bastien C, Taylor G. 2016. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.). Tree Physiology 36: 909-928.</Citation>
</Reference>
<Reference>
<Citation>Wong SC, Cowan IR, Farquhar GD. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424-426.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
<orgName>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Durand, Maxime" sort="Durand, Maxime" uniqKey="Durand M" first="Maxime" last="Durand">Maxime Durand</name>
</region>
<name sortKey="Brendel, Oliver" sort="Brendel, Oliver" uniqKey="Brendel O" first="Oliver" last="Brendel">Oliver Brendel</name>
<name sortKey="Bure, Cyril" sort="Bure, Cyril" uniqKey="Bure C" first="Cyril" last="Buré">Cyril Buré</name>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000522 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000522 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32150759
   |texte=   Changes in irradiance and vapour pressure deficit under drought induce distinct stomatal dynamics between glasshouse and field-grown poplars.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32150759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020